In collaboration with Payame Noor University and Iran Neuropsychology Association

Document Type : Original article

Authors

1 MA Student in Motor Behavior, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

2 Instructor of Motor Behavior, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

3 Associate Professor of Motor Behavior, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

Abstract

Introduction: The purpose of this study was to investigate the effect of time limitation and level of movement on the spatial accuracy of the speed-precision of Fits task while moving with distal and proximal parts of the hand. Method: The method of this study was semi-experimental and in terms of purpose was fundamental. The statistical university was of the right-handed female students of 19 to 28 years old. Sampling method was available to 20 people. The data were collected by software hit to the target designed by the researcher. The tool used was similar to the one used in the Fits test, and its validity was confirmed by the experienced people in motor behavior. The software reliability was obtained 0.89 through test-retest and Pearson correlation coefficient. Findings: In the review of the hits number to the right side goal, the main effect of the limited time and the interaction of the part with limited time was significant at different limited times. Also, at various limited times, it had a remarkable effect on the correct hits number to the right side target in the proximal and distal parts while doing movement in the horizontal and vertical level. Additionally, the hits number to the left side target, at various limited times, the main effect of the limited time and the interaction of the motion plate with the section was also significant. In the proximal and distal parts of the horizontal and vertical motion, limited time variations had a significant effect on the correct hits number to the left side target.Conclusion: Therefore, the longer the movement time is, the greater the accuracy of movement and the lesser the effective width of the target. The accuracy of movement in the distal part is higher than the proximal section. Also, the difficulty of moving in a horizontal level is less than the vertical level.

Keywords

اشمیت، ریچاردای و لی، تیموتی.دیی (2005). یادگیری و کنترل حرکتی، ترجمه     حمایت­طلب، رسول و قاسمی، عبدالله (1391)تهران:انتشارات علم و حرکت.
تقی زاده، فهیمه، دانشفر، افخم و  شجاعی، معصومه. (1393). اثر الگوی ترجیح جانبی چشم و دست، تکلیف و سطح مهارت بر عملکرد بازیکنان تنیس روی میز. نشریه رفتار حرکتی, 6(15), 127-140.‎
طاهرپوری، طیبه. (1393). تأثیر همسو و دگرسو بر یادگیری مهارت پرتاب آزاد بسکتبال. پایان­نامه دانشگاه شهید چمران اهواز. رفتار حرکتی.
عظیمی، رضوان. (1392). اثر کانون توجه، پیچیدگی تکلیف و سطح مهارت برمبادله سرعت-دقت در دختران جوان؛ پژوهشگاه علوم و تحقیقات اطلاعات ایران.
عموزاده­خلیلی، محمد، یادگاری، هما (1382). مقایسه میزان رشد حرکات ظریف و دقیق در کودکان مهدهای کودک شهری و روستایی سمنان. مجلۀ علمی دانشگاه علوم پزشکی سمنان. جلد 5، شماره 1و 2.
لاتاش، ال. مارک (2008)اصول کنترل حرکتی، ترجمه دوستان، محمدرضا، هاشمی، معصومه، شمشیری، سارا، علوی، خلیل (1394) : انتشارات حتمی.
نیک نام، ملیحه و دوستان، محمدرضا. (1396). بررسی تأثیر بازخورد دامنه ای فضایی و زمانی بر کاهش خطای دقت زمانبندی و فضایی تکلیف مبادله سرعت-دقت فیتز. فصلنامه علمی­ـ پژوهشی   عصب­روانشناسی,  3 (11), 23-38.‎
Abbruzzese, G, Assini, A, Buccolieri, A, Schieppati, M, & Trompetto, C. (1999). Comparison of intracortical inhibition and facilitation in distal and proximal arm muscles in humans. The Journal of physiology, 514(3), 895-903.
 Balakrishnan, R., & MacKenzie, I. S. (1997). Performance differences in the fingers, wrist, and forearm in computer input control. In Proceedings of the ACM SIGCHI Conference on Human factors in computing systems(pp. 303-310). ACM
Bi, X., Grossman, T., Matejka, J., & Fitzmaurice, G. (2011). Magic desk: bringing multi-touch surfaces into desktop work. In Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 2511-2520). ACM.
Boyle, J. B. (2010). Control of wrist and arm movements of varying difficulties (Doctoral dissertation, Texas A&M University).
Crossan, A., Williamson, J., Brewster, S., & Murray-Smith, R. (2008). Wrist rotation for interaction in mobile contexts. In Proceedings of the 10th international conference on Human computer interaction with mobile devices and services (pp. 435-438). ACM.
Elliott, D., Hansen, S., Grierson, L. E., Lyons, J., Bennett, S. J., & Hayes, S. J. (2010). Goal-directed aiming: two components but multiple processes. Psychological bulletin, 136(6), 1023.
Fitts, P. (1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology, 47(6). 381-191.
 Gilliot, J., Casiez, G., & Roussel, N. (2014). Impact of form factors and input conditions on absolute indirect-touch pointing tasks. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems(pp. 723-732). ACM.
Ifft. J, Peter, A.Lebedev, Mikhail, A.L.Nicolelis, Miguel (2011) Cortical correlates of fits law. Volume 5 | Article 85 | 1
Jagacinski, R. J., & Monk, D. L. (1985). Fitts’ Law in Two dimensions with hand and head movements movements. Journal of Motor Behavior, 17(1), 77-95.
Lacquaniti, F., Ferrigno, G., Pedotti, A., Soechting, J. F., & Terzuolo, C. (1987). Changes in spatial scale in drawing and handwriting: kinematic contributions by proximal and distal joints. The journal of Neuroscience, 7(3), 819-828.
Lohman, D. F. (2014). Estimating individual differences in information processing using speed-accuracy models. In Abilities, Motivation and Methodology (pp. 141-186). Routledge.
MacKenzie, I. S., & Isokoski, P. (2008). Fitts' throughput and the speed-accuracy tradeoff. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 1633-1636). ACM.
Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1), 97-113.
Olson, D, Russel, C, Sprinkle, D.H. (2014). Circumplex model: Systemic assessment and treatment of familities. Routledge.
Pedersen, E. W., & Hornbæk, K. (2012). An experimental comparison of touch interaction on vertical and horizontal surfaces. In Proceedings of the 7th Nordic Conference on Human-Computer Interaction: Making Sense Through Design (pp. 370-379). ACM.
Pennfield, W., & Rasmussen, T. (1950). The cerebral cortex of man: A clinical study of localication of function. New York: Macmillan.
Rozand, V., Lebon, F., Papaxanthis, C., & Lepers, R. (2015). Effect of mental fatigue on speed–accuracy trade-off. Neuroscience, 297, 219-230.
Schieppati, M., Trompetto, C., & Abbruzzese, G. (1996). Selective facilitation of responses to cortical stimulation of proximal and distal arm muscles by precision tasks in man. The Journal of Physiology, 491(Pt 2), 551.
Schmidt, R. A., & Wrisberg, C. A. (2008). Motor learning and performance: A situation-based learning approach. Human kinetics.
Voelker, S., Matviienko, A., Schöning, J., & Borchers, J. (2015). Combining Direct and Indirect Touch Input for Interactive Desktop Workspaces using Gaze Input.
Woodworth, R. S. (1899). Accuracy of voluntary movement. The Psychological Review: Monograph Supplements, 3, i-114.
Zhai, S., Milgram, P., & Buxton, W. (1996). The influence of muscle groups on performance of multiple degree-of-freedom input. In Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 308-315). ACM