زمانی، گل اندام و دوستان، محمدرضا. (1396). تأثیر تحریک الکتریکی فراجمجه ای مغز بر حافظه کاری و زمان واکنش دختران ورزشکار. فصلنامه علمی ـ پژوهشی عصب روانشناسی، 3(10)، 51-62.
شاهمرادی، سپیده و اورکی، محمد. (1397). تاثیر تحریک فراجمجمهای مغز با استفاده از جریان مستقیم الکتریکی(TDCS) بر حافظه کاری و شدت نشانههای افسردگی. فصلنامه علمی ـ پژوهشی عصب روانشناسی،4(15)، 75-88.
یاوری کاتب، میثم؛ مقدس تبریزی، یوسف؛ شهربانیان، شهناز؛ غرایاق زندی، حسن و به جامه، فاطمه. (1397). اثرات تحریک الکتریکی مستقیم مغز بر تصویرسازی حرکتی دانشجویان. پژوهشهای کاربردی روانشناختی، 9(1)، 148-166.
یداله زاده، الهه. (1396). روانشناسی تصویرسازی ورزشی، انتشارات حتمی، چاپ دوم، صص: 63-98.
Beste, C., Heil, M., Domschke, K., & Konrad, C. (2010). The relevance of the functional 5-HT1A receptor polymorphism for attention and working memory processes during mental rotation of characters. Neuropsychologia, 48(5), 1248-1254.
Bruno, V., Fossataro, C., Bolognini, N., Zigiotto, L., Vallar, G., Berti, A., & Garbarini, F. (2017). The role of premotor and parietal cortex during monitoring of involuntary movement: A combined TMS and tDCS study. Cortex, 96, 83-94.
Chen, X., Bin, G., Daly, I., & Gao, X. (2013). Event-related desynchronization (ERD) in the alpha band during a hand mental rotation task. Neuroscience letters, 541, 238-242.
Cumming, J., & Williams, S. E. (2013). Introducing the revised applied model of deliberate imagery use for sport, dance, exercise, and rehabilitation. Movement & Sport Sciences-Science & Motricité, (82), 69-81.
Diwadkar, V. A., Carpenter, P. A., & Just, M. A. (2000). Collaborative activity between parietal and dorso-lateral prefrontal cortex in dynamic spatial working memory revealed by fMRI. Neuroimage, 12(1), 85-99.
Doruk, D., Gray, Z., Bravo, G. L., Pascual-Leone, A., & Fregni, Kessels, R. P., Van Zandvoort, M. J., Postma, A., Kappelle, L. J., & De Haan, E. H. (2000). The Corsi block-tapping task: standardization and normative data. Applied neuropsychology, 7(4), 252-258.
Kosslyn, S. M., DiGirolamo, G. J., Thompson, W. L., & Alpert, N. M. (1998). Mental rotation of objects versus hands: Neural mechanisms revealed by positron emission tomography. Psychophysiology, 35(2), 151-161.
Linn, M. C., & Petersen, A. C. (1986). A meta-analysis of gender differences in spatial ability: Implications for mathematics and science achievement. The psychology of gender: Advances through meta-analysis, 67-101.
Madhavan, S., & Shah, B. (2012). Enhancing motor skill learning with transcranial direct current stimulation–a concise review with applications to stroke. Frontiers in psychiatry, 3, 66.
Maeda, Y., & Yoon, S. Y. (2013). A meta-analysis on gender differences in mental rotation ability measured by the Purdue spatial visualization tests: Visualization of rotations (PSVT: R). Educational Psychology Review, 25(1), 69-94.
Milenkovic, S., & Dragovic, M. (2013). Modification of the Edinburgh Handedness Inventory: a replication study. Laterality: Asymmetries of Body, Brain and Cognition, 18(3), 340-348.
Mondino, M., Bennabi, D., Poulet, E., Galvao, F., Brunelin, J., & Haffen, E. (2014). Can transcranial direct current stimulation (tDCS) alleviate symptoms and improve cognition in psychiatric disorders?. The World Journal of Biological Psychiatry, 15(4), 261-275.
Nitsche, M. A., & Paulus, W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology, 57(10), 1899–1901.
Parsons, L. M. (1994). Temporal and kinematic properties of motor behavior reflected in mentally simulated action. Journal of Experimental Psychology: Human Perception and Performance, 20(4), 709.
Reis, J., Robertson, E., Krakauer, J. W., Rothwell, J., Marshall, L., Gerloff, C ... & Classen, J. (2008). Consensus: “Can tDCS and TMS enhance motor learning and memory formation?” Brain stimulation, 1(4), 363.
Rodriguez-Ugarte, M., Iáñez, E., Ortiz-Garcia, M., & Azorín, J. (2018). Effects of tDCS on Real-Time BCI Detection of Pedaling Motor Imagery. Sensors, 18(4), 1136. Systems and Rehabilitation Engineering, 21(3), 404-415.
Sadock, B. J., Sadock, V. A., & Kaplan, H. I. (2009). Kaplan and Sadock's concise textbook of child and adolescent psychiatry. Lippincott Williams & Wilkins.
Schmidt, R. A., Lee, T., Winstein, C., Wulf, G., & Zelaznik, H. (2018). Motor Control and Learning, 6E. Human kinetics.
Schmidt, R., & Lee, T. (2013). Motor Learning and performance, 5E with web study guide: from principles to application. Human Kinetics.
Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171(3972), 701-703.
Simonsmeier, B. A., & Buecker, S. (2017). Interrelations of imagery use, imagery ability, and performance in young athletes. Journal of Applied Sport Psychology, 29(1), 32-43.
Subirats, L., Allali, G., Briansoulet, M., Salle, J. Y., & Perrochon, A. (2018). Age and gender differences in motor imagery. Journal of the neurological sciences, 391, 114-117.
Tseng, P., Hsu, T. Y., Chang, C. F., Tzeng, O. J., Hung, D. L., Muggleton, N. G., et al. (2012). Unleashing potential: Transcranial direct current stimulation over the right posterior parietal cortex improves change detection in low-performing individuals. Journal of Neuroscience, 32(31), 10554–10561.
Utz, K. S., Dimova, V., Oppenländer, K., & Kerkhoff, G. (2010). Electrifed minds: Transcranial direct current stimulation (tDCS) and Galvanic Vestibular Stimulation (GVS) as methods of noninvasive brain stimulation in neuropsychology. A review of current data and future implications. Neuropsychologia, 48, 2789–2810.
Vicario, C. M., & Nitsche, M. A. (2013). Non-invasive brain stimulation for the treatment of brain diseases in childhood and adolescence: state of the art, current limits and future challenges. Frontiers in systems neuroscience, 7, 94.
Wei, P., He, W., Zhou, Y., & Wang, L. (2013). Performance of motor imagery brain-computer interface based on anodal transcranial direct current stimulation modulation. IEEE Transactions on Neural