In collaboration with Payame Noor University and Iran Neuropsychology Association

Document Type : Original article

Authors

1 M.A of cognitive Psychology, Ferdowsi University, Mashhad, Iran.

2 professor of Psychology, Ferdowsi University, Mashhad, Iran.

3 Associate Professor of Psychology, Shiraz University, Shiraz, Iran.

4 PHd Student in Cognitive Neuroscience, Tabriz University,Tabriz, Iran.

Abstract

Aim: Thinking as one of the cognitive functions has always been of interest to researchers. With a distinction between divergent and convergent cognitive processes, Guilford has made a huge impact on experimental research on creative thinking. Alpha frequency band in the range of 12-8 Hz is associated with cognitive functions such as creativity. The purpose of this study was to investigate the increase and decrease of alpha power changes (event-related synchronization and de-synchronization) in two different types of divergent and convergent thinking. Method: The sample of this study consists of 38 postgraduate students of Ferdowsi University of Mashhad (19 males, 19 females) who were selected by available and voluntary sampling method. The brain waves were recorded using a 19-channel instrument while performing divergent  and convergent thinking tasks, and alpha power changes were analyzed using MATLAB software. Results: activity of alpha waves is in the position of divergent thinking from the anterior regions to the posterior regions with synchronization, while in the convergent thinking position we have seen the reduction in the power of the alpha band in the posterior regions compared to the anterior regions of the brain. Conclusion: The activity of alpha waves is significantly associated with divergent thinking tasks, which increased activity in the posterior regions of the brain with increased activity, in contrast to tasks related to convergent thinking, indicated decreased activity from the anterior regions to the posterior regions.

Keywords

اکبری­فر ح، شریفی­درآمدی پ، رحیم­زاده ح، پزشک ش ( 1398 ). اثر بخشی مداخله بازی­های فعال بر حافظه کاری دانش­آموزان با اختلال خواندن. فصلنامه عصب-روانشناسی. 5 (1)، 162-149.
بیرامی، م؛ نظری،م ؛عندلیب کورایم، م (1390). بررسی میزان هم نوسانی الگوهای امواج مغزیباند تتا در تفکر همگرا و واگرا. مجله   تازه­های علوم شناختی،2، 8-1.
دانا الف، شمس الف ( 1398 ). اثر بخشی مداخلات توانبخشی شناختی مغز بر کارکردهای اجرایی در کودکان مبتلا به نقص توجه و بیش­فعالی. فصلنامه عصب-روانشناسی. 5 (3)، 131-140.
صبوری مقدم، ح.(1387). تاثیر دستکاری انگیزشی و سیستم­های مغزی-رفتاری در سرعت هدایت عصبی.رساله دکتری، دانشگاه تبریز.
Agnoli, S., Zanon, M., Mastria, S., Avenanti, A., & Corazza, G. E. (2018). Enhancing creative cognition with a rapid right-parietal neurofeedback procedure. Neuropsychologia118, 99-106.
Beaty, R. E., Benedek, M., Kaufman, S. B., & Silvia, P. J. (2015). Default and executive network coupling supports creative idea production. Scientific reports5, 10964
Benedek, M., & Fink, A. (2019). Toward a neurocognitive framework of creative cognition: The role of memory, attention, and cognitive control. Current Opinion in Behavioral Sciences27, 116-122.
Benedek, M., & Jauk, E. (2019). 10 Creativity and Cognitive Control. The Cambridge Handbook of Creativity, 200.
Benedek, M., Jauk, E., Sommer, M., Arendasy, M., & Neubauer, A. C. (2014). Intelligence, creativity, and cognitive control: The common and differential involvement of executive functions in intelligence and creativity. Intelligence46, 73-83.
Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex19(12), 2767-2796.
Carlsson, I., Wendt, P. E., & Risberg, J. (2000). On the neurobiology of creativity. Differences in frontal activity between high and low creative subjects. Neuropsychologia38(6), 873-885.
Chen, Q., Beaty, R. E., Cui, Z., Sun, J., He, H., Zhuang, K., ... & Qiu, J. (2019). Brain hemispheric involvement in visuospatial and verbal divergent thinking. NeuroImage202, 116065.
Cheng, L., Hu, W., Jia, X., & Runco, M. A. (2016). The different role of cognitive inhibition in early versus late creative problem finding. Psychology of Aesthetics, Creativity, and the Arts10(1), 32.
Claridge, G., & McDonald, A. (2009). An investigation into the relationships between convergent and divergent thinking, schizotypy, and autistic traits. Personality and Individual Differences, 46(8), 794-799.
Fink, A., & Benedek, M. (2014). EEG alpha power and creative ideation. Neuroscience & Biobehavioral Reviews44, 111-123.
Fink, A., & Benedek, M. (2019). The Neuroscience of Creativity. Neuroforum25(4), 231-240.
Fink, A., Grabner, R. H., Benedek, M., & Neubauer, A. C. (2006). Divergent thinking training is related to frontal electroencephalogram alpha synchronization. European Journal of Neuroscience23(8), 2241-2246.
Fink, A., Graif, B., & Neubauer, A. C. (2009). Brain correlates underlying creative thinking: EEG alpha activity in professional vs. novice dancers. NeuroImage46(3), 854-862.
Fink, A., Rominger, C., Benedek, M., Perchtold, C. M., Papousek, I., Weiss, E. M., ... & Memmert, D. (2018). EEG alpha activity during imagining creative moves in soccer decision-making situations. Neuropsychologia114, 118-124.
Fink, A., Schwab, D., & Papousek, I. (2011). Sensitivity of EEG upper alpha activity to cognitive and affective creativity interventions. International Journal of Psychophysiology82(3), 233-239.
Fink, A., Weiss, E. M., Schwarzl, U., Weber, H., de Assunção, V. L., Rominger, C., ... & Papousek, I. (2017). Creative ways to well-being: Reappraisal inventiveness in the context of anger-evoking situations. Cognitive, Affective, & Behavioral Neuroscience17(1), 94-105.
Heilman, K. M., Nadeau, S. E., & Beversdorf, D. O. (2003). Creative innovation: possible brain mechanisms. Neurocase, 9(5), 369-379.
Jaarsveld, S., Fink, A., Rinner, M., Schwab, D., Benedek, M., & Lachmann, T. (2015). Intelligence in creative processes: An EEG study. Intelligence49, 171-178.
Jauk, E., Benedek, M., & Neubauer, A. C. (2012). Tackling creativity at its roots: Evidence for different patterns of EEG alpha activity related to convergent and divergent modes of task processing. International Journal of Psychophysiology84(2), 219-225.
Jaušovec, N. (2000). Differences in cognitive processes between gifted, intelligent, creative, and average individuals while solving complex problems: an EEG stuy. Intelligence28(3), 213-237.
Jung-Beeman, M., Bowden, E. M., Haberman, J., Frymiare, J. L., Arambel-Liu, S., Greenblatt, R., ... & Kounios, J. (2004). Neural activity when people solve verbal problems with insight. PLoS biology2(4), e97.
Klimesch, W., Sauseng, P., & Hanslmayr, S. (2007). EEG alpha oscillations: the inhibition–timing hypothesis. Brain research reviews53(1), 63-88.
Lopata, J. A., Nowicki, E. A., & Joanisse, M. F. (2017). Creativity as a distinct trainable mental state: an EEG study of musical improvisation. Neuropsychologia99, 246-258.
Martindale, C. (1999). Biological bases of creativity. Handbook of creativity2, 137-152.
Martindale, C., & Hasenfus, N. (1978). EEG differences as a function of creativity, stage of the creative process, and effort to be original. Biological psychology6(3), 157-167.
Mölle, M., Marshall, L., Wolf, B., Fehm, H. L., & Born, J. (1999). EEG complexity and performance measures of creative thinking. Psychophysiology36(1), 95-104.
Neubauer, A. C., & Fink, A. (2003). Fluid intelligence and neural efficiency: effects of task complexity and sex. Personality and Individual Differences35(4), 811-827.
Neuper, C., & Klimesch, W. (Eds.). (2006). Event-related dynamics of brain oscillations (Vol. 159). Elsevier.
Razoumnikova, O. M. (2000). Functional organization of different brain areas during convergent and divergent thinking: an EEG investigation. Cognitive Brain Research, 10(1), 11-18.
Razumnikova, O. M. (2004). Gender differences in hemispheric organization during divergent thinking: an EEG investigation in human subjects. Neuroscience Letters362(3), 193-195.
Rominger, C., Papousek, I., Perchtold, C. M., Benedek, M., Weiss, E. M., Schwerdtfeger, A., & Fink, A. (2019). Creativity is associated with a characteristic U-shaped function of alpha power changes accompanied by an early increase in functional coupling. Cognitive, Affective, & Behavioral Neuroscience19(4), 1012-1021.
Rominger, C., Papousek, I., Perchtold, C. M., Benedek, M., Weiss, E. M., Weber, B., ... & Fink, A. (2020). Functional coupling of brain networks during creative idea generation and elaboration in the figural domain. NeuroImage207, 116395.
Rominger, C., Papousek, I., Perchtold, C. M., Weber, B., Weiss, E. M., & Fink, A. (2018). The creative brain in the figural domain: Distinct patterns of EEG alpha power during idea generation and idea elaboration. Neuropsychologia118, 13-19.
Rominger, C., Papousek, I., Weiss, E. M., Schulter, G., Perchtold, C. M., Lackner, H. K., & Fink, A. (2018). Creative thinking in an emotional context: Specific relevance of executive control of emotion-laden representations in the inventiveness in generating alternative appraisals of negative events. Creativity Research Journal30(3), 256-265.
Sauseng, P., Klimesch, W., Doppelmayr, M., Pecherstorfer, T., Freunberger, R., & Hanslmayr, S. (2005). EEG alpha synchronization and functional coupling during top‐down processing in a working memory task. Human brain mapping26(2), 148-155.
Staudt, B., & Neubauer, A. C. (2006). Achievement, underachievement and cortical activation: a comparative EEG study of adolescents of average and above‐average intelligence. High Ability Studies17(1), 3-16.
van Driel, J., Gunseli, E., Meeter, M., & Olivers, C. N. (2017). Local and interregional alpha EEG dynamics dissociate between memory for search and memory for recognition. Neuroimage149, 114-128.
Wianda, E., & Ross, B. (2019). The roles of alpha oscillation in working memory retention. Brain and behavior9(4), e01263.
Zhou, S., Chen, S., Wang, S., Zhao, Q., Zhou, Z., & Lu, C. (2018). Temporal and spatial patterns of neural activity associated with information selection in open-ended creativity. Neuroscience371, 268-276.