اکبریفر ح، شریفیدرآمدی پ، رحیمزاده ح، پزشک ش ( 1398 ). اثر بخشی مداخله بازیهای فعال بر حافظه کاری دانشآموزان با اختلال خواندن. فصلنامه عصب-روانشناسی. 5 (1)، 162-149.
بیرامی، م؛ نظری،م ؛عندلیب کورایم، م (1390). بررسی میزان هم نوسانی الگوهای امواج مغزیباند تتا در تفکر همگرا و واگرا. مجله تازههای علوم شناختی،2، 8-1.
دانا الف، شمس الف ( 1398 ). اثر بخشی مداخلات توانبخشی شناختی مغز بر کارکردهای اجرایی در کودکان مبتلا به نقص توجه و بیشفعالی. فصلنامه عصب-روانشناسی. 5 (3)، 131-140.
صبوری مقدم، ح.(1387). تاثیر دستکاری انگیزشی و سیستمهای مغزی-رفتاری در سرعت هدایت عصبی.رساله دکتری، دانشگاه تبریز.
Agnoli, S., Zanon, M., Mastria, S., Avenanti, A., & Corazza, G. E. (2018). Enhancing creative cognition with a rapid right-parietal neurofeedback procedure. Neuropsychologia, 118, 99-106.
Beaty, R. E., Benedek, M., Kaufman, S. B., & Silvia, P. J. (2015). Default and executive network coupling supports creative idea production. Scientific reports, 5, 10964
Benedek, M., & Fink, A. (2019). Toward a neurocognitive framework of creative cognition: The role of memory, attention, and cognitive control. Current Opinion in Behavioral Sciences, 27, 116-122.
Benedek, M., & Jauk, E. (2019). 10 Creativity and Cognitive Control. The Cambridge Handbook of Creativity, 200.
Benedek, M., Jauk, E., Sommer, M., Arendasy, M., & Neubauer, A. C. (2014). Intelligence, creativity, and cognitive control: The common and differential involvement of executive functions in intelligence and creativity. Intelligence, 46, 73-83.
Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19(12), 2767-2796.
Carlsson, I., Wendt, P. E., & Risberg, J. (2000). On the neurobiology of creativity. Differences in frontal activity between high and low creative subjects. Neuropsychologia, 38(6), 873-885.
Chen, Q., Beaty, R. E., Cui, Z., Sun, J., He, H., Zhuang, K., ... & Qiu, J. (2019). Brain hemispheric involvement in visuospatial and verbal divergent thinking. NeuroImage, 202, 116065.
Cheng, L., Hu, W., Jia, X., & Runco, M. A. (2016). The different role of cognitive inhibition in early versus late creative problem finding. Psychology of Aesthetics, Creativity, and the Arts, 10(1), 32.
Claridge, G., & McDonald, A. (2009). An investigation into the relationships between convergent and divergent thinking, schizotypy, and autistic traits. Personality and Individual Differences, 46(8), 794-799.
Fink, A., & Benedek, M. (2014). EEG alpha power and creative ideation. Neuroscience & Biobehavioral Reviews, 44, 111-123.
Fink, A., & Benedek, M. (2019). The Neuroscience of Creativity. Neuroforum, 25(4), 231-240.
Fink, A., Grabner, R. H., Benedek, M., & Neubauer, A. C. (2006). Divergent thinking training is related to frontal electroencephalogram alpha synchronization. European Journal of Neuroscience, 23(8), 2241-2246.
Fink, A., Graif, B., & Neubauer, A. C. (2009). Brain correlates underlying creative thinking: EEG alpha activity in professional vs. novice dancers. NeuroImage, 46(3), 854-862.
Fink, A., Rominger, C., Benedek, M., Perchtold, C. M., Papousek, I., Weiss, E. M., ... & Memmert, D. (2018). EEG alpha activity during imagining creative moves in soccer decision-making situations. Neuropsychologia, 114, 118-124.
Fink, A., Schwab, D., & Papousek, I. (2011). Sensitivity of EEG upper alpha activity to cognitive and affective creativity interventions. International Journal of Psychophysiology, 82(3), 233-239.
Fink, A., Weiss, E. M., Schwarzl, U., Weber, H., de Assunção, V. L., Rominger, C., ... & Papousek, I. (2017). Creative ways to well-being: Reappraisal inventiveness in the context of anger-evoking situations. Cognitive, Affective, & Behavioral Neuroscience, 17(1), 94-105.
Heilman, K. M., Nadeau, S. E., & Beversdorf, D. O. (2003). Creative innovation: possible brain mechanisms. Neurocase, 9(5), 369-379.
Jaarsveld, S., Fink, A., Rinner, M., Schwab, D., Benedek, M., & Lachmann, T. (2015). Intelligence in creative processes: An EEG study. Intelligence, 49, 171-178.
Jauk, E., Benedek, M., & Neubauer, A. C. (2012). Tackling creativity at its roots: Evidence for different patterns of EEG alpha activity related to convergent and divergent modes of task processing. International Journal of Psychophysiology, 84(2), 219-225.
Jaušovec, N. (2000). Differences in cognitive processes between gifted, intelligent, creative, and average individuals while solving complex problems: an EEG stuy. Intelligence, 28(3), 213-237.
Jung-Beeman, M., Bowden, E. M., Haberman, J., Frymiare, J. L., Arambel-Liu, S., Greenblatt, R., ... & Kounios, J. (2004). Neural activity when people solve verbal problems with insight. PLoS biology, 2(4), e97.
Klimesch, W., Sauseng, P., & Hanslmayr, S. (2007). EEG alpha oscillations: the inhibition–timing hypothesis. Brain research reviews, 53(1), 63-88.
Lopata, J. A., Nowicki, E. A., & Joanisse, M. F. (2017). Creativity as a distinct trainable mental state: an EEG study of musical improvisation. Neuropsychologia, 99, 246-258.
Martindale, C. (1999). Biological bases of creativity. Handbook of creativity, 2, 137-152.
Martindale, C., & Hasenfus, N. (1978). EEG differences as a function of creativity, stage of the creative process, and effort to be original. Biological psychology, 6(3), 157-167.
Mölle, M., Marshall, L., Wolf, B., Fehm, H. L., & Born, J. (1999). EEG complexity and performance measures of creative thinking. Psychophysiology, 36(1), 95-104.
Neubauer, A. C., & Fink, A. (2003). Fluid intelligence and neural efficiency: effects of task complexity and sex. Personality and Individual Differences, 35(4), 811-827.
Neuper, C., & Klimesch, W. (Eds.). (2006). Event-related dynamics of brain oscillations (Vol. 159). Elsevier.
Razoumnikova, O. M. (2000). Functional organization of different brain areas during convergent and divergent thinking: an EEG investigation. Cognitive Brain Research, 10(1), 11-18.
Razumnikova, O. M. (2004). Gender differences in hemispheric organization during divergent thinking: an EEG investigation in human subjects. Neuroscience Letters, 362(3), 193-195.
Rominger, C., Papousek, I., Perchtold, C. M., Benedek, M., Weiss, E. M., Schwerdtfeger, A., & Fink, A. (2019). Creativity is associated with a characteristic U-shaped function of alpha power changes accompanied by an early increase in functional coupling. Cognitive, Affective, & Behavioral Neuroscience, 19(4), 1012-1021.
Rominger, C., Papousek, I., Perchtold, C. M., Benedek, M., Weiss, E. M., Weber, B., ... & Fink, A. (2020). Functional coupling of brain networks during creative idea generation and elaboration in the figural domain. NeuroImage, 207, 116395.
Rominger, C., Papousek, I., Perchtold, C. M., Weber, B., Weiss, E. M., & Fink, A. (2018). The creative brain in the figural domain: Distinct patterns of EEG alpha power during idea generation and idea elaboration. Neuropsychologia, 118, 13-19.
Rominger, C., Papousek, I., Weiss, E. M., Schulter, G., Perchtold, C. M., Lackner, H. K., & Fink, A. (2018). Creative thinking in an emotional context: Specific relevance of executive control of emotion-laden representations in the inventiveness in generating alternative appraisals of negative events. Creativity Research Journal, 30(3), 256-265.
Sauseng, P., Klimesch, W., Doppelmayr, M., Pecherstorfer, T., Freunberger, R., & Hanslmayr, S. (2005). EEG alpha synchronization and functional coupling during top‐down processing in a working memory task. Human brain mapping, 26(2), 148-155.
Staudt, B., & Neubauer, A. C. (2006). Achievement, underachievement and cortical activation: a comparative EEG study of adolescents of average and above‐average intelligence. High Ability Studies, 17(1), 3-16.
van Driel, J., Gunseli, E., Meeter, M., & Olivers, C. N. (2017). Local and interregional alpha EEG dynamics dissociate between memory for search and memory for recognition. Neuroimage, 149, 114-128.
Wianda, E., & Ross, B. (2019). The roles of alpha oscillation in working memory retention. Brain and behavior, 9(4), e01263.
Zhou, S., Chen, S., Wang, S., Zhao, Q., Zhou, Z., & Lu, C. (2018). Temporal and spatial patterns of neural activity associated with information selection in open-ended creativity. Neuroscience, 371, 268-276.